Search for content

Use Case

How to get a KPI for a corridor over a specific time range

The use case is focused on to get KPI data on a specific corridor,  over a specific time range, to analyse performance metrics and understand trends and patterns over specific periods.

First step

The endpoint is:

GET
https://api.myptv.com/kpi/{type}/get

 

Path parameter 

The type parameter specifies the output data type:

  • overall: returns aggregated results over the entire time interval
  • detailed: provides segment-level detailed results.

 

Query parameters 

For additional details, see API Reference.

ParameterRequiredNoteExample
kpidYESIdentifier of the KPI.Not applicable
fromTimeNO Start of the time interval.2024-12-01T00:00:00Z
toTimeNO

End of the time interval.

Max interval is:

  • 1 year for overall results (type=overall)
  • 1 day for detailed results  (type=detailed)
2024-12-02T23:59:59Z
timeAggregationNO

Possible values:

  • MINUTES_5
  • MINUTES_15
  • MINUTES_30
  • HOURS_1
  • DAYS_1
HOURS_1

 

Example of request

GET https://api.ptvgroup.tech/hda/v1/kpi/overall/get?kpiId=8e144767b57448b69c920f39ec685e1b&fromTime=2025-01-01T00:00:00Z&toTime=2025-01-07T23:59:59Z&timeAggregation=HOURS_1 HTTP/1.1

Host: api.ptvgroup.tech

Authorization: apiKey YOUR_API_KEY

Accept: application/json

 

Example of response

{
    "meta": {
       "kpiId": "d3377835-aa86-4873-93a8-a7936aff6dcd",
       "minT": "2025-01-03T16:00:00Z",
       "maxT": "2025-01-03T17:00:00Z",
       "result_size": 2,
       "defaultValue": 25.603634,
       "pathLength": 30.454311
    },
    "data": [
        {
           "timestamp": "2025-01-03T16:00:00Z",
           "value": 23.4687476,
           "unusualValue": 56.10981,
           "averageValue": 46.37683,
           "status": "OK"
        },
        {
           "timestamp": "2025-01-03T17:00:00Z",
           "value": 21.816655124999997,
           "unusualValue": 56.088036,
           "averageValue": 43.26787000000001,
           "status": "OK"
        }
    ]
}

 

Second step

Based on the response, you can analyse the KPI data to identify trends and patterns of the corridor over the specified time range.

Best practices

You can choose the aggregation level that fits your analysis needs:

  • Fine-grained value (MINUTES_5) for detailed analysis.
  • Coarse-grained value (DAYS_1) for long-term trends.

 

Data formats available are:

  • JSON for easy integration and parsing.
  • Compressed CSV for large datasets to reduce bandwidth and storage.